Antimicrobial Stewardship:

Inpatient and Outpatient Elements

Angela Perhac, PharmD
afperhac@carilionclinic.org
Disclosure

• I have no relevant finances to disclose.
Objectives

• Review the core elements of antimicrobial stewardship in regards to inpatient facilities
• Explain practices and policies that can help meet Joint Commission requirements
• Compare/contrast new outpatient core elements with previously published inpatient requirements
• Create a plan to implement core elements at your facility
The Growing Problem

ANTIBIOTIC RESISTANCE
A type of drug resistance which renders the antibiotic ineffective in killing or controlling the bacterial growth.

WHY IS ANTIBIOTIC RESISTANCE A PROBLEM?

MORE THAN **40 MILLION** Antibiotic prescriptions in 2011 were unnecessary!

Nearlly **50%** of U.S. meat is contaminated with bacteria that is resistant to various antibiotics.

No new major antibiotic has been developed in the last 30 years.

WHAT THE STATISTICS REVEAL?

- **ONLY 10 PERCENT** adults are prescribed the correct antibiotic for Strep infections.
- **ONLY 0%** correct prescribing rate for acute bronchitis.
- **OVER 4%** increase in antibiotic prescription rates in last 14 years.

PERCENTAGE OF ANTIBIOTICS CURRENTLY USED IN THE FOOD CHAIN.

- 76% of antibiotics currently used in the food chain. Only 24% of antibiotics used in the U.S. are for humans.

76% OF ANTIBIOTICS IN THE U.S. ARE USED FOR LIVESTOCK ONLY. Out of this, only 6% accounts for therapeutic purpose!

https://www.cdc.gov/getsmart/
Threat of Resistance

Estimated minimum number of illnesses and deaths caused annually by antibiotic resistance*:

At least 2,049,442 illnesses, 23,000 deaths

*bacteria and fungus included in this report

Carbapenem Resistance

Deaths from Resistance
First reported cases of bacterial resistance against key antibiotics

Accessed from: http://www.cddep.org/tools
Inpatient Stewardship

• Up to 50% of inpatient antibiotics are unnecessary or inappropriate

• 2014: CDC recommended that all acute care hospitals implement Antibiotic Stewardship Programs

• Benefits include:
 • Improved quality of patient care/safety
 • Increased infection cure rates/reduced treatment failures
 • Reduce hospital rates of *Clostridium difficile* infection
 • Reduce antibiotic resistance
 • Save hospitals money

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Groups

• White house
 • National Action Plan for Combating Antibiotic-Resistant Bacteria is to reduce inappropriate antibiotic use by 50% in outpatient settings by 2020

• Joint Commission
 • Standards are now (2017) required in hospitals, including critical access, and nursing homes

• Centers for Medicare & Medicaid Services (CMS)
 • Required for reimbursement
Joint Commission

- Antimicrobial Stewardship program
 - Leadership support
 - Annual education of staff (those involved in administering, prescribing, dispensing, and monitoring)
 - Education for patients
 - Multidisciplinary team
 - Utilization of the CDC core elements of stewardship

https://www.jointcommission.org/assets/1/6/New_Antimicrobial_Stewardship_Standard.pdf
Leadership Support

- Formal statements that the facility supports efforts to improve and monitor antibiotic use
- Including stewardship-related duties in job descriptions and annual performance reviews
- Ensuring staff from relevant departments are given sufficient time to contribute to stewardship activities
- Supporting training and education
- Ensuring participation from the many groups that can support stewardship activities

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Accountability

• Stewardship program leader:
 • Identify a single leader who will be responsible for program outcomes

• Pharmacy leader:
 • Identify a single pharmacy leader who will co-lead the program

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Key Supporters

- Clinicians and department heads
- Infection preventionists
- Quality improvement staff
- Laboratory staff
- Information technology staff
- Nurses

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Drug Expertise

• Formal training in infectious diseases and/or antibiotic stewardship benefits stewardship program leaders
 • MAD-ID and SIDP offer antimicrobial stewardship certificates

• Larger facilities have achieved success by hiring full time staff to develop and manage stewardship programs

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Action

• Implement policies that support optimal antibiotic use
• Utilize specific interventions
• Prioritize interventions based on the needs of the hospital

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Interventions

• Institution specific treatment guidelines

• Documentation of dose, duration, and indication for antibiotics

• Types
 • Broad
 • Pharmacy-driven
 • Infection/Syndrome specific

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Broad Interventions

• Antibiotic “time outs”

• Prior authorization

• Prospective audit and feedback
Pharmacy-driven Interventions

- Automatic changes from IV to PO antibiotics
- Dose adjustments/optimization
- Automatic alerts for potentially inappropriate therapy
- Time-sensitive automatic stop orders
- Detection and prevention of drug interactions

https://www.cdc.gov/getsmt/healthcare/implement/materials/core-elements.html
Infection/Syndrome Specific Interventions

- Community-acquired pneumonia
- Urinary tract infections
- Skin and soft tissue infections
- Empiric coverage of methicillin-resistance staphylococcus aureus
- Clostridium difficile infections

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Penicillin Skin Testing

• Only around 10% of penicillin allergies are real

• Penicillin skin testing has been proposed as a way to reduce use of broad spectrum antibiotics when a narrow beta lactam is preferred

• Testing involves a two-step process (with an optional third step) that takes approximately 45–60 minutes

Penicillin skin testing as an antimicrobial stewardship initiative

- Antimicrobial program initiated penicillin skin testing for patients with allergies

<table>
<thead>
<tr>
<th>Patients with penicillin allergy (n=36)</th>
<th>Skin test results</th>
<th>Patients switched to cephalosporin or penicillin</th>
<th>Reactions after starting beta-lactam</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 (100%) negative</td>
<td>27/36 (75%)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Rapid Diagnostic Testing

• Microbiology rapid diagnostics identify organism(s) and many possible resistance genes
 – BioFire, Nanosphere Verigene, MALDI-TOF

• Utilizing this technology shortens time to appropriate antimicrobial therapy for patients and reduces complications/length of stay

Nanosphere Verigene

• Organisms:
 – Gram-positives:
 • Staphylococcus aureus, epidermidis, lugdunensis
 • Streptococcus pneumoniae, pyogenes, agalactiae, sp. (other than those previously listed)
 • Enterococcus faecalis, faecium
 • Listeria sp.
 – Gram-negatives:
 • Escherichia coli
 • Klebsiella oxytoca, pneumoniae
 • Proteus sp.
 • Citrobacter sp.
 • Acinetobacter sp.
 • Pseudomonas aeruginosa
 • Enterobacter sp.

• Resistance genes:
 – Gram-positive:
 • MRSA/MRSE: MecA
 • VRE: VanA, VanB
 – Gram-negative:
 • ESBL: CTX-M
 • CRE: KPC, VIM, IMP, OXA, NDM
Tracking

- Monitoring antibiotic prescribing
- Antibiotic use process measures
- Antibiotic use measures
- Outcome measures

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Reporting

- National Healthcare Safety Network (NHSN), CDC has developed an Antibiotic Use (AU) option that reports monthly days of therapy (DOT) data.

- DOT is an aggregate sum of days for which any amount of a specific antimicrobial agent is administered or dispensed to a particular patient (numerator) divided by a standardized denominator (e.g., patient days, days present, or admissions).

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html

- 300 acute care hospitals provided antibiotic use data for over 34 million discharges representing 166 million patient-days

- Retrospectively estimated (DOT) per 1000 patient-days and the proportion of hospital discharges in which a patient received at least 1 dose of an antibiotic during the hospital stay

Results

• **55.1%** of patients received at least 1 dose of antibiotics during their hospital visit

• The overall national DOT was **755 per 1000** patient-days

• The following antibiotic classes increased significantly:
 - third- and fourth-generation cephalosporins
 - macrolides
 - glycopeptides
 - β-lactam/β-lactamase inhibitor combinations
 - carbapenems
 - tetracyclines

Education

• Antibiotic stewardship programs should provide regular updates on antibiotic prescribing, antibiotic resistance, and infectious disease management that address both national and local issues

• Annual education required by Joint Commission

https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html
Moving Forward

- Inpatient stewardship is now required in all hospitals
- Last fall, CDC released core elements for outpatient stewardship – not yet required
- Outpatient stewardship presents different challenges compared to inpatient stewardship
Outpatient Stewardship

• Approximately 60% of antibiotic use in the United States is in the outpatient setting

• 143,000 annual ED visits from antibiotic complications

• 35% of adult and 70% pediatric C. diff infections are community acquired

Guidelines

Identify high priority conditions
- Ex: bronchitis, ear infections, asymptomatic bacteriuria

Identify barriers
- Ex: knowledge gaps, patient expectations

Establish prescribing standards
- Ex: clinical practice guidelines, institution specific guidelines

Commitment

• Write and display public commitments in support of stewardship
• Identify a single leader to direct stewardship activities
• Include antibiotic stewardship-related duties in position descriptions or job evaluation criteria
• Communicate with all clinic staff members to set patient expectations

Nudging guideline-concordant antibiotic prescribing

- Randomized clinical trial
 - 15 prescribers
 - 5 outpatient clinics
- Intervention: Poster containing a public commitment to use antibiotics judiciously with clinician picture and signature displayed in examination rooms at point of clinician-patient encounter
- Outcome: Antibiotic prescribing rates for acute respiratory infections (ARIs) for which antibiotics are inappropriate

Results

- **19.7% decrease in inappropriate prescribing for acute respiratory infections**

<table>
<thead>
<tr>
<th>Intervention</th>
<th>% Inappropriate prescriptions</th>
<th>P-value: 0.02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commitment Posted</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>Control Group</td>
<td>52.7%</td>
<td></td>
</tr>
</tbody>
</table>
Action for Policy and Practice

• Use evidence-based diagnostic criteria and treatment recommendations

• Use delayed prescribing practices or watchful waiting

• Provide communications skills training for clinicians

Action for Policy and Practice

• Require explicit written justification in the medical record for non-recommended antibiotic prescribing

• Provide support for clinical decisions

• Use call centers, nurse hotlines, or pharmacist consultations as triage systems to prevent unnecessary visits

https://www.cdc.gov/getsmtart/community/improving-prescribing/core-elements/core-outpatient-stewardship.html
Effect of behavioral interventions on inappropriate antibiotic prescribing among primary care practices

- 3 interventions:
 - Suggested alternatives to antibiotics in electronic medical record
 - Accountable justification required in medical record for non-recommended antibiotic prescribing
 - Peer comparison to top-performing peers

- 248 clinicians, 47 primary care clinics

Results

• 31,712 visits for acute respiratory tract infections for which antibiotics are not indicated
 • 14,753 during baseline
 • 16,959 during intervention

<table>
<thead>
<tr>
<th>Antibiotics Prescribed</th>
<th>Suggested alternatives</th>
<th>Accountable justification</th>
<th>Peer comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention group</td>
<td>6.1%</td>
<td>5.2%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Control group</td>
<td>22.1%</td>
<td>23.2%</td>
<td>19.9%</td>
</tr>
</tbody>
</table>

Tracking and Reporting

• Self-evaluate antibiotic prescribing practices

• Participate in continuing medical education and quality improvement activities to track and improve antibiotic prescribing

Tracking and Reporting

• Implement at least one antibiotic prescribing tracking and reporting system

• Assess and share performance on quality measures and established reduction goals addressing appropriate antibiotic prescribing from health care plans and payers
Education and Expertise

- Use effective communications strategies to educate patients about when antibiotics are and are not needed
- Educate patients about the potential harms of antibiotic treatment
- Provide patient education materials

Education and Expertise

• Provide face-to-face educational training (academic detailing)

• Provide continuing education activities for clinicians

• Ensure timely access to persons with expertise

Outpatient Parenteral Antimicrobial Therapy (OPAT)

• Allows for appropriate management of patients requiring long term antibiotics

• Reduces complications and helps prevent readmissions

• IDSA published practice guidelines
Development and implementation of a pharmacist-managed OPAT program

- Collaborative Practice Agreement (CPA)
- Pharmacist sees patients in clinic and determines appropriate therapy changes

Summary

• Joint Commission requires inpatient stewardship as of 2017
 • Stewardship playbook
 • IDSA guidelines
 • CDC core elements checklist

• Not enough Infectious Diseases trained pharmacists
 • MAD-ID and SIDP offer stewardship certificates

• Outpatient stewardship not yet require, but likely in the future
Assessment Questions
Question #1

• True/False: An Infectious Diseases physician is required to be the stewardship program leader?

A. True
B. False
Question #1

• True/False: An Infectious Diseases physician is required to be the stewardship program leader?

A. True
B. False
Question #2

• Which of the following is a barrier to stewardship?

A. Patient expectations for antibiotics
B. Knowledge gaps for specific disease states
C. Lack of antibiotic usage data
D. All of the above
Question #2

- Which of the following is a barrier to stewardship?

A. Patient expectations for antibiotics
B. Knowledge gaps for specific disease states
C. Lack of antibiotic usage data
D. All of the above
Question #3

• True/False: Simple interventions can have drastic effects on prescribing practices?

A. True
B. False
Question #3

• True/False: Simple interventions can have drastic effects on prescribing practices?

A. True
B. False
Question #4

• Which of the following activities can be performed by pharmacists in an OPAT clinic?

A. Patient visit
B. Billing under CPA
C. Adjusting antimicrobial dosing
D. All of the above
Question #4

• Which of the following activities can be performed by pharmacists in an OPAT clinic?

A. Patient visit
B. Billing under CPA
C. Adjusting antimicrobial dosing
D. All of the above
Antimicrobial Stewardship:
Inpatient and Outpatient Elements

Angela Perhac, PharmD
afperhac@carilionclinic.org